Soloflex

Soloflex refers to an exercise machine and the company created in 1978 by Jerry Wilson which makes the machine. The machine was the first of its kind.

Soloflex also makes the Rockit and adjustable dumbbells.

Soloflex, the company has been involved in a major lawsuit over the similarly named Bowflex exercise machine which they have claimed damaged their marketing both through "copycat" advertising and later through a major product recall[1]. The case was settled out of court with an 8 million dollar cash payment to Soloflex [2].

Soloflex machines use an elastic element to provide resistance which means that force increases further into the exercise. This has been considered to be a disadvantage by serious weight trainers who have stated that it reduces the efficiency of the exercise provided.


This page about Soloflex includes information from a Wikipedia article.
Additional articles about Soloflex
News stories about Soloflex
External links for Soloflex
Videos for Soloflex
Wikis about Soloflex
Discussion Groups about Soloflex
Blogs about Soloflex
Images of Soloflex

This has been considered to be a disadvantage by serious weight trainers who have stated that it reduces the efficiency of the exercise provided. fuel efficiency). Soloflex machines use an elastic element to provide resistance which means that force increases further into the exercise. Raising overall pressure ratio tends to improve specific fuel consumption (i.e. The case was settled out of court with an 8 million dollar cash payment to Soloflex [2]. Either way, raising core flow increases core power and, thereby, the net thrust or shaftpower of the engine. Soloflex, the company has been involved in a major lawsuit over the similarly named Bowflex exercise machine which they have claimed damaged their marketing both through "copycat" advertising and later through a major product recall[1]. Core flow will increase if the original compressor outlet (corrected) flow size is maintained.

Soloflex also makes the Rockit and adjustable dumbbells. Supercharging can also be achieved by improving the aerodynamics of the existing blading. The machine was the first of its kind. If the fan flow is not increased, the bypass ratio will decrease. Soloflex refers to an exercise machine and the company created in 1978 by Jerry Wilson which makes the machine. Pratt & Whitney PW4000) have gained core flow by adding one or more stages to the front of the gas generator, usually in the LP (or IP) compressor. Many of the large turbofan engine series (e.g.

Converting a turbojet into a turbofan, by adding a fan spool, also supercharges the compression system, thereby raising core flow. If stress considerations prevent any shaft speed increase, there is only a modest increase in airflow. non-dimensional) speed of original compressor should be maintained, by raising the mechanical shaft speed by a factor √(Tstage1new/Tstage1old). Ideally, the corrected (i.e.

zero) stage to a compressor will not only increase the overall pressure ratio of the cycle, but induce more airflow into the unit, by supercharging the entry plane of the original compressor. For example, adding an additional (i.e. Supercharging is not confined to superchargers - jet engines rely on supercharging as one of the main routes to thrust growth and improved fuel efficiency. It is also possible to drive the blower from the crank shaft and use an exhaust turbine for output power.

It also tends to run less hot. This is important in dragsters and small sports cars. The main advantage of an engine with a mechanically driven supercharger is better throttle response. For this reason, both the economy and the power of a turbocharged engine are usually better.

The thermal efficiency, or fraction of the fuel/air energy that is converted to output power, is less with a mechanically driven supercharger than with a turbocharger, because the energy of the exhaust pressure is lost. This lag can be addressed by reducing the size of each individual unit such that the combined output is still as great as a single large turbocharger without having to suffer the lag-time required to reach operating speed. This gives a large power increase for a given engine speed at the cost of increasing the lag-time for the exhaust to heat up sufficiently to drive the turbochargers. An alternative arrangement utilizes two turbochargers of the same type, known as a "twin turbo".

This gives the opportunity of fitting multiple turbochargers to a single engine, such as in a "sequential turbo", where one turbo is tuned to give increased performance at low engine speed and another turbo is tuned to increase the high-speed engine performance. The physical space occupied by a turbocharger is significantly less than its direct-drive counterpart. The size of the piping alone is a serious issue; consider that the Vought F4U and Republic P-47 used the same engine but the huge barrel-like fuselage of the latter was, in part, needed to hold the piping to and from the turbocharger in the rear of the plane. Yet the vast majority of WWII engines used superchargers, because they maintained three significant manufacturing advantages over turbochargers, which were larger, involved extra piping, and required exotic high-temperature materials in the turbine.

Better yet the amount of power in the gas is the difference between the exhaust pressure and air pressure, which increases with altitude, so turbochargers generally have much better altitude performance. Thus at low altitudes the turbo robs nothing and, as the altitude increases, it can use just as much power as it needs and no more. In addition the power in the exhaust would otherwise be wasted (except to the extent that the exhaust itself provided thrust) whereas in the supercharger that power is being taken directly from the engine. Since the turbo is driven off the exhaust gases, simply dumping some of the exhaust pressure is sufficient to drive the compressor at almost any desired speed.

It is interesting to compare all of this complexity to the same system implemented with a turbocharger. The two-stage Merlin was losing 400 hp (300 kW) to turn the supercharger but developing between 1500 and 1700 hp (1125 to 1275 kW) at the propeller shaft, depending on model. At low altitudes one stage could be turned off completely. After being compressed "half-way" in the low pressure stage the air flowed through an intercooler radiator where it was partially cooled down before being compressed the rest of the way in the high pressure stage and then aftercooled in another air/air or coolant/air radiator (heat exchanger).

In order to avoid pre-ignition the "two stage" design was used. Compressing a gas always causes its temperature to rise, and an overcompressed fuel-air mixture may therefore prematurely ignite. A final improvement was the use of two compressors in series, which were introduced to solve the pre-ignition problem. Ultimately it was found that for most engines (excepting those in high-performance fighters) a single-stage two-speed setup was most suitable.

These provided more flexibility for the operation of the aircraft although they also entailed more complexity of manufacturing and maintenance. In the 1930s two-speed drives were developed for superchargers. Supercharging by itself could not have achieved these improvements; however, when married with fuel improvements, the engine could respond to both. By mid-1940 another increased boost yielded 1310 hp (980 kW).

This allowed the boost on Merlin engines to be increased to 48 inHg (160 kPa) and the power to rise by more than 10% (from 1030 to 1160 hp, or 770 to 870 kW). In 1940 a batch of 100 octane fuel was delivered from the USA to the RAF. This generally "flattened out" the power below the critical altitude. As the war progressed two-speed superchargers were introduced using better controllers and, notably, hydraulic clutches, that allowed the boost to be managed over a wide range of altitudes by operating at low rpm down low and at high rpm at higher altitudes.

For the early years of the war this was simply how it was and this led to the seemingly odd fact that many early-war engines actually delivered less power at lower altitudes, because the supercharger was still using up power to compress air that was not delivering any power back. Also, due to the denser air at lower altitudes, the supercharger is not operating at its best efficiency, and this can cause an additional load on the engine. Unless other measures are taken, this means that at least some of the power driving the supercharger is wasted. Below the critical altitude the supercharger is capable of delivering too much boost and must therefore be restricted lest the engine be damaged.

British engines were generally able to outperform German ones. Throughout WWII British superchargers generally had higher critical altitudes than their German counterparts and, when combined with higher octane fuels that the Americans supplied, that allowed for higher boost levels. The boost is typically measured as the altitude at which the supercharger can still supply sea level pressure (100 kPa or 1000 mbar) and is referred to as the critical altitude. A supercharger is only able to supply so much pressure because the compression increases the air temperature, and the engine is limited in maximum charge-air temperature before pre-ignition occurs.

For this reason supercharged planes fly much faster at higher altitudes. And while the engine might be fooled into thinking it's at sea level, the airframe is quite aware of the halved air density and the plane thus has half the drag. Yet the benefits are huge, for that 150 horsepower (110 kW) lost, the engine is delivering 1000 hp (750 kW) when it would otherwise deliver 750 hp (560 kW). On the single-stage single-speed supercharged Rolls Royce Merlin engine for instance, the supercharger uses up about 150 horsepower (110 kW).

This can take some effort. A supercharger remedies this problem by compressing the air back to sea-level pressures, or even much higher. Since the charge in the cylinders is being pushed in by this air pressure it means that the engine will normally produce half-power at full throttle at this altitude. As an aircraft climbs to higher altitudes the pressure of the surrounding air quickly falls off—at 6000 m (18,000 ft) the air is at half the pressure of sea level.

A more natural use of the supercharger is with aircraft engines. There are three types commonly used in today's automotive world: Roots type supercharger, twin-screw type supercharger, and Centrifugal type supercharger. Also, improperly installed or excessive boost will greatly reduce life expectancy of the engine as well as the transmission (which may not have been designed to cope with additional torque). Nevertheless, adding boost to a car will often void the drivetrain warranty.

Gas mileage can also be saved with a turbo because the engine does not have as much displacement, therefore not needing to inject as much petrol in the the cylinders. This also results in better gas mileage, as mileage is often a function of the overall weight of the car and that is based, to some degree, on the weight of the engine. For this reason boosting is commonly used in smaller cars, where the added weight of the supercharger is smaller than the weight of a larger engine delivering the same amount of power. Boosting used to be an effective way to dramatically shorten an engine's life but, today, there is considerable overdesign possible with modern materials and boosting is no longer a serious reliability concern.

Boosting has made something of a comeback in recent years due largely to the increased quality of the alloys and machining of modern engines. Since then superchargers (as well as turbochargers) have been widely applied to racing and production cars, although their complexity and cost has largely relegated the supercharger to the world of pricey performance cars. It wasn't long after its invention before the supercharger was applied to custom racing cars, with the first supercharged production vehicles being built by Mercedes and Bentley in the 1920s. This design is the basis for the modern Roots type supercharger.

His first superchargers were based on a twin-rotor air-pump design first patented by American Francis Roots in 1860. In 1900 Gottlieb Daimler (of Daimler-Benz / Daimler-Chrysler fame) became the first person to patent a forced-induction system for internal combustion engines. By pushing the air into the cylinders, it is as if the engine had larger valves and cylinders, resulting in a "larger" engine that weighs less. In cars, the device is used to increase the "effective displacement" and volumetric efficiency of an engine, and is often referred to as a blower.

. In applications where a massive amount of power is more important than any other consideration, such as top-fuel dragsters and vehicles used in tractor pulling competitions, superchargers are extremely common. Superchargers may absorb as much as a third of the total crankshaft power of the engine, and in many applications are less efficient than turbochargers. It is similar in purpose to the closely related turbocharger, but a turbocharger is powered by the flow of the engine's exhaust gases driving a turbine.

A supercharger is powered mechanically by belt- or chain-drive from the engine's crankshaft. The additional mass of oxygen that is forced into the cylinders allows the engine to burn more fuel, which improves the volumetric efficiency of the engine and makes it more powerful. A supercharger (also known as a blower, or a centrifugal pump) is a gas compressor used to compress air into the cylinders of an internal combustion engine.

07-22-14 FTPPro Support FTPPro looks and feels just like Windows Explorer Contact FTPPro FTPPro Help Topics FTPPro Terms Of Use ftppro.com/1stzip.php ftppro.com/zip ftppro.com/browse2000.php PAD File Directory Business Search Directory Real Estate Database FunWebsites.org PressArchive.net WebExposure.us Display all your websites in one place HereIam.tv Celebrity Homepages Charity Directory Google+ Directory Move your favorite Unsigned Artist to the Top of the List Bet Real Money Heads-Up Against Other Users